Q: Find the arc length of the parametric curve defined by $x(t)=\cos t+\ln \left(\tan \frac{t}{2}\right)$ and $y(t)=\sin t$ on the interval from $\frac{\pi}{4} \leq t \leq \frac{3 \pi}{4}$.

A: First, compute the derivatives :

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=-\sin t+\frac{\sec ^{2} \frac{t}{2}}{2 \tan \frac{t}{2}}=-\sin t+\frac{1}{2} \sec \frac{t}{2} \csc \frac{t}{2} \\
& \frac{\mathrm{~d} y}{\mathrm{~d} t}=\cos t
\end{aligned}
$$

$$
s=\int^{3 \pi / 4} \mathrm{~d} t \sqrt{\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)} \quad \begin{aligned}
& \text { definition of arc length } \\
& \text { parameterized by } t
\end{aligned}
$$

$$
=\int^{3 \pi / 4} \mathrm{~d} t \sqrt{\left(-\sin t+\frac{1}{0} \sec \frac{t}{0} \csc \frac{t}{0}\right)^{2}+\sin ^{2} t} \quad \text { substitute derivatives }
$$

$$
=\int_{\pi / 4}^{3 \pi / 4} \mathrm{~d} t \sqrt{\cos ^{2} t-\sin t \sec \frac{t}{2} \csc \frac{t}{2}+\frac{1}{4} \sec ^{2} \frac{t}{2} \csc ^{2} \frac{t}{2}+\sin ^{2} t} \text { expand square }
$$

$$
=\int_{\pi / 4}^{3 \pi / 4} \mathrm{~d} t \sqrt{1-\sin t \sec \frac{t}{2} \csc \frac{t}{2}+\frac{1}{4} \sec ^{2} \frac{t}{2} \csc ^{2} \frac{t}{2}}
$$

$$
=\int_{\pi / 4}^{3 \pi / 4} \mathrm{~d} t \sqrt{\csc ^{2} t-1} \quad \text { half-angle identities }
$$

$$
=\int_{\pi / 4}^{3 \pi / 4}|\cot t| \mathrm{d} t
$$

Pythagorean identity

$$
=2 \int_{\pi / 4}^{\pi / 2} \cot t \mathrm{~d} t
$$

cot t is negative over part of the interval and symmetric around $\frac{\pi}{2}$

$$
=\left.2 \ln (\sin t)\right|_{\pi / 4} ^{\pi / 2}
$$ integrate

$$
=2\left(\ln 1-\ln \frac{\sqrt{2}}{2}\right)
$$

subsitute limits
logarithmic identities
$=2 \ln \sqrt{2}$
$=\ln 2 \quad$ logarithmic identity

